FAST Project and its Science Goals Five hundred meter Aperture Spherical radio Telescope

Zhu, Ming (on behalf of the FAST team) National Astronomical Observatories Chinese Academy of Sciences

content

- Introduction to the FAST project
- General technical specifications
- Critical technologies
- FAST Science

Five hundred meter Aperture Spherical Telescope

- Unique Karst depression as the site
- Active main reflector
 - Cable parallel robot feed support

Site Surveying in Guizhou

Location: N25.647222^o E106.8558 e: the Karst region in south Guizhou Province

Quick Bird Fly Oct. 6, 2005

2. General Technical Specification

Spherical reflector: Radius \sim 300m, Aperture \sim 500m, Opening angle 110~120° Illuminated aperture: D_{ill}=300m Focal ratio: f/D = 0.467Sky coverage: zenith angle 40° (up to 60° with efficiency loss) tracking hours 0~6h Frequency: 70M ~ 3 GHz (up to 8GHz in future upgrading) Sensitivity (L-Band) : A/T~2000, T~20 K Resolution (L-Band) : 2.9' Multi-beam (L-Band) : 19, beam number of future FPA >100 Slewing: <10min Pointing accuracy: 8"

Declination

Right Ascension

Frequency range

~2400 winches ~4600 panels

daptive cable-mesh

Two realizations of main reflector Solid panel-actuator

Feed Support

mechanical-electronic-optical integrated design

- Focal cap diameter 206m
- Cabin in total ~30t
- Load on lower plate ~3t
- Maximum tracking 11.6mm/s
- Slewing 400mm/s
- Position error <10mm</p>
- Pointing accuracy 8"

Three main parts of cabin suspension

- Cable network first adjustable system
- Stewart secondary adjustable system
- Close loop control

Experiment on the cable supporting system

- under the wind 8m/s, 1st adjustment
 reaches control accuracy 8mm
 as the stabilizer is switched on accuracy 4mm
- spectra 0.18Hz

Total weight of cabin ~ 30t

receivers	4
Stabilized platform	2
actuators	1,5
X-Y Frames	4
Y- positioner base	4
cladding	8
Top frame – star truss	4

total	27,5

Measurement – precise, quick and in long distance

Task 1: 3-D spatial positions of focus cabin

- Large working range up to 300 m
- Errors ~1 mm
- Sampling rate > 10 Hz

Task 2: profiles of main reflector

- Number of targets ~2400
- ~1000 in illuminated area
- Accuracy 1~2mm
- Sampling interval 10 sec ~ few min

Photogrammetry Surveying reflector profile

1000 nodes within illuminated area to be scanned in real period ~ 1 min

Receiver -- Schematic Diagram

9 sets of FAST receivers NAOC - JBO

No	Band (GHz)	Beams	Pol.	Cryo Tsys(K)	Science
1	0.07 - 0.14	1	RCP LCP	no 1000	High-z HI(EoR),PSR, VLBI, Lines
2	0.14 - 0.28	1	RCP LCP	no 400	High-z HI(EoR),PSR, VLBI, Lines
3	0.28 - 0.56	1 or multi	RCP LCP	no 150	High-z HI(EoR),PSR, VLBI, Lines Space weather, Low frequency DSN
4	0.56 - 1.02	1 or multi	RCP LCP	yes 60	High-z HI(EoR),PSR, VLBI, Lines Exo-planet science
5	0.320 - 0.334	1	RCP LCP	no 200	HI,PSR,VLBI Early sciences
6	0.55 – 0.64	1	RCP LCP	yes 60	HI,PSR,VLBI Early Sciences
7	1.15 – 1.72	1 L wide	RCP LCP	yes 25	HI,PSR,VLBI,SETI,Lines
8	1.23 – 1.53	19 Lnarrow multibeam	RCP LCP	yes 25	HI and PSR survey, Transients
9	2.00 - 3.00	1	RCP/ LCP	yes 25	PTA, DSN, VLBI, SETI

2. General Technical Specification

Spherical reflector: Radius \sim 300m, Aperture \sim 500m, Opening angle 110~120° Illuminated aperture: D_{ill}=300m Focal ratio: f/D = 0.467Sky coverage: zenith angle 40° (up to 60° with efficiency loss) tracking hours 0~6h Frequency: 70M ~ 3 GHz (up to 8GHz in future upgrading) Sensitivity (L-Band) : A/T~2000, T~20 K Resolution (L-Band) : 2.9' Multi-beam (L-Band) : 19, beam number of future FPA >100 Slewing: <10min Pointing accuracy: 8"

FAST sciences

Neutral Hydrogen line (HI) survey Pulsar research VLBI network Molecular line study (including) recombination lines, masers) Search for Extraterrestrial Intelligence **SE**

Key HI Science Questions

- How do the HI properties of low-mass galaxies compare in different environments at z ~ 0?
 An all FAST sky HI survey
- How is gas accreted from the IGM onto galaxies?
 - Map HI in the cosmic web
- How does the HI content of galaxies change from z = 0 - 1?
 - An HI Deep Field

What are the HI properties of low-mass galaxies at z ~ 0?

- Recent measurements of the HI mass function (HIMF) are based on few to no detections of galaxies with $M_{\rm HI} < 10^7 M_{\odot}$.
- It is unclear how the slope of the HIMF changes in different environments.
- Need more detections of a wider range of M_{HI} over a larger volume of space.

HIPASS: Zwaan et al. 2005

A FAST all-sky HI survey

- Using a 19 beam L-band receiver, one can map 2.3π sterradians FAST sky at 20 sec per beam in under 4000 hours.
- This will yield about 3 million detections with M_{HI}< 10¹¹ M_☉out to z ~ 0.15 in a range of environments including Virgo, Coma, Hydra, Ursa Major clusters and Shapley supercluster plus neighboring voids.
- About 2000 detections will have $M_{\rm HI}{<}\,10^7~M_{\odot}$ with D ${<}\,15$ Mpc.
- The number of detections is an order of magnitude larger than expected for any planned surveys with Arecibo or ASKAP.

Duffy et al Number of galaxies to be detected per day (18h) using FAST 19 beams with different san range 6 sec ---- 60 sec 600 sec 6000 sec 60000 sec

Xuelei Chen	Veff vs scale 1/4				
sky coverage survey by					
FAST					
6 s	44 days				
12 s	88 days				
1 min	440 days				

Duffy et al

How is gas accreted from the IGM onto galaxies?

- Is the low N_{HI} gas seen around M 31 and M 33 fuel for star formation being accreted from the "cosmic web" or is it indicative of past tidal interactions?
- We need to map this HI around many galaxies in different environments to determine origin.

10²²

 10^{21}

 10^{20} 10^{19}

 10^{18} 10^{17} 10^{16}

10¹⁵

N(HI) Column Denisty (cm⁻²)

ACDM COSMOLOGICAL GALAXY SIMULATIONS

Kacprzak et al. 2010

Cosmic web

Ibata and Lewis (2008) Sciences 319, 50

Volume density vs. N(HI) and neutrual factoin vs. N(HI)

Prochaska et al. 2010

Proposed Survey 2

- To map a 4 square degree area, with an integration time of 10 minute per beam, in 10 hours we can reach a 3σ sensitivity of 1.5 x10¹⁷ cm⁻² per 2.1 km/s channel.
- The beamsize of FAST has the same linear extent as the GBT at 3x the distance. T_{sys} is better than Arecibo.
- Select regions of different environments,
 - void, big galaxies, clusters ...

M31

HI map of M31

Braun & Thilker 2003

Kravtsov - Simulation on dark matter distribution in a normal galaxy

Xuelei Chen – Estimated FAST detection sensitivity of 1 min & 1 h Line width 30km/s,S/N -10

How does HI content evolve from

z = 0 - 1?

- Studies of Damped Lyman α absorbers show Ω_{HI} is roughly flat with z, but SFR increases by factor of 10x to z = 1. How do we reconcile these trends?
- Most distant HI-rich galaxies detected at z ~ 0.2 (Zwaan et al. 2001, Verheijen et al. 2007, Catinella et al. 2008).
- Stacking has detected HI statistically at z ~ 0.37 (Lah et al. 2007, 2009).
- 21 cm intensity mapping of a largescale filament with the GBT produced a detection at z ~ 0.8 (Chang et al. 2010).
- Gravitational lensing may also help in detection of individual galaxies.

HI emission at z~ 0.2

The most distant individual detections of HI emission are at $z \sim 0.2$ by Zwaan et al. (2001), Verheijen et al. (2007), and Catinella et al. (2008) using WSRT and Arecibo. These are limited by sensitivity and receiver

bandwidths.

An HI Deep Field

- A survey of a 1 square degree region with a single pixel receiver at 40 hours per beam will take about 5000 hours.
- The survey could detect 10000 galaxies at z ≤ 0.66 in a wide range of environments. This is twice the number of galaxies that the planned SKA pathfinder deep fields expect to have.

FAST Pulsar Survey

There are ~ 2 X 10⁴ detectable pulsars in the Galaxy, half is in FAST sky

- Thousands of new pulsars
 Rare objects

 Exotic stars quark matter
 Pulsar-BH binary
 Stellar evolution before SN
- ISM map of unprecedented details

Pulsar timing arrays to detect longwavelength gravitational waves

Telescope requirements: Sensitivity at low frequencies and Sky Coverage

Sensitivity at low frequencies

- Collecting area (FAST wins easily)
- System noise temperature (Must have good receivers)
- Bandwidth (Must have good pulsar backends)
- Available tracking time (Arecibo < FAST < GBT)

Sky Coverage

- Declination range (Arecibo < FAST < GBT)
- Instantaneous field of view for surveys SS \propto (N $\Omega)$ $\Delta v(A$ / T)^2

The simulated uv-coverage of EVN+FAST for sources of Declination 10 and 60 degree

UV Coverage for UVCOV

UV Coverage for UVCOV

Search for binary SMBH

 Galaxy mergers yield inspiraling, binary, and recoiling black holes that may be detectable with high resolution VLBI search for offnuclear and binary SMBHs

FAST+VLBI

Current status of FAST project

1

9

Total budget ~ 688 millions ¥

Construction started in March 2011, earthwork are expected to completed in Sept 2012

First light expected in 2016

- Eartwork- Main reflector
- Feed support

- Receivers

- Measurement and control
 - Infrastructures
 - Design
 - Observatory and facilities
 - Site exploration
 - Contingency

Summary

- •FAST has very high sensitivity and large coverage of the northern sky
- •Good for searching for weak signals, low surface density structures
- •FAST has the <u>potential</u> to make great contribution to HI and pulsar studies and VLBI observations
- First light expected in 2016

Website: fast.bao.ac.cn