

TMT-China opportunities & challenges

Suijian Xue CTMT Project Office Nov. 8, 2011

Outline

- Current status
- Ongoing technical activities
- Summary

Why joining TMT?

- Golden era for astronomy ...
- Currently Chinese optical/IR facilities lag significantly behind
 - 2.4m versus 10m (general-purpose telescopes)
 - no good seeing and weather sites (Dome-A, Antarctica)
- China has built up infrastructures in the last decade
 - e.g., LAMOST has built up the technology know-how for constructing segmented mirrors, spectrographs etc; AO technology development
- Chinese Astrophysics Strategy Committee recommended joining TMT as the highest priority, in equal footing with Dome-A
- **○** In the US, the Astro2010 report
 - ranks GSMT (TMT/GMT) as the third highest priority for ground-based astronomy (but number one by the optical/IR panel.)
 - recommends NSF immediately down-selects either TMT or GMT and participate at the 25% level.

Progress and Status

- May. 2009 TMT-China consortium formed among CAS institutes NAOC, NIAOT, IOE, CIOMP, TIPC
- Nov. 2009 TMT-China obtains "observer" status
- Nov. 2010 MoU signed TMT-China upgrades participation stage
- Sept. 2011 LOI signed among partners, NAOC becomes a member of TMT collaborative board
- Oct. 2011 First official evaluation meeting on TMT by MOST Panel recommends:
 - China should participate TMT at no less than 10% level, with in-kind contribution at no less than 70% level;
 - TMT-China should be endorsed with initial R&D funding ASAP

TMT-C Consortium Institutes

Exchange visits & negotiation

International Symposium on Photoelectronic Detection of International Colloquium on Thirty-Meter Telescope

ee, C

nittee, C

Profe

²hotoelectroni

Cor

chnology

ee, CSA

China's In-kind Technical Contributions

NIAOT: M1 stress mirror polishing and mass production

NIAOT & USTC: preliminary design WFOS/AGWFS

CIMOP: Polishing and fabricating M3CA & M3PA

On going technical activities

Work Packages signed

- 1) NIAOT SMP demonstration on 3 mirror blanks
- 2) IOE LGSF(BTO/LLT) update and preliminary design
- 3) TIPC 20W pulsed sodium laser prototype demonstration
- 4) NIAOT&USTC Feasibility and Conceptual Design Studies for the WFOS/MOBIE Acquisition, Guiding, and Wavefront Sensing (AGWFS) Subsystem
- CIMOP Preliminary design for M3 cell assembling and positioner assembling
- Work Packages in developing
 - TIPC Cryogenic systems design for all instruments
 - M2 mirror polishing?

Works been done at NIAOT

LAMOST Segmented mirror system 61 (24 planner +37 spherical)

TMT technical goal: toward to a mass production of aspherical SMP

20m vertical testing tower

CIMOP kicked off the project on M3CA, M3PA

Towar

- CIM engin

- In p

- Sch

CIMOP kicked off the project on M3CA, M3PA

Works on Science Instrument-WFOS

- The AGWFS team at NIAOT&USTC completed a comprehensive Feasibility Study, including
 - The optical design of the AGWFS,
 - The mechanical concept for the AGWFS,
 - Detector choices for the AGWFS detectors,
 - A list of remaining top-level design choices facing the conceptual design phase, and
 - The cost estimate for the AGWFS
- The conceptual study and the support of MOBIE concept study will be carried out in 2011.07-2012.03

AGWFS—Where it is?

TMT LGSF & Laser reference design

LGSF design improvement carrying out at IOE

- 2010年初,完成20W钠激光导星发射装置,成功得到图像
- 改进了TMT 激光导星系统(LGSF)初期概念设计

3. Development of our sodium laser system

3. Development of our sodium laser system

Field experiment for the LGS system

2011 Oct 21

UBC LIDAR Test Facility Site of Na Layer Photon Return Tests

- Next version of TIPC laser to be tested in China and at UBC facility in 2012
- ESO Toptica/MPB laser prototype planned for UBC test in 2013 following tests in Europe and Chile

New test building to house TIPC laser system at UBC LIDAR test facility

Summary

- TMT offers China a unique opportunity to leapfrog in observational astronomy
 - Complementary with other efforts
- China has the capability to contribute in many areas
 - Stress Mirror Polishing of M1, for mass production
 - Lasers and laser guide star facility
 - Polishing and fabricating 4m-class optics & fine-mechanics i.e., M3 mirrors system
 - Advanced cryogenic technology application
 - WFOS (Wide-field Optical Spectrometer)
- Much remains to be done!

Much remains to be done!

- What do we need to improve in TMT-China?
 - Management? Organisation? Transparency?
 - Community involvement? CAS & University
- How do we build up scientifically competitive teams?
 - Observer base? Summer school/workshop; small telescope training.
 Obtain international telescope time through open competitions. Utilize the domestic facilities well through student training, in observing and technology, undergraduates.
 - Theoretical simulations? Integration between obs. And theo.; already leading in GPU/super-computing in some areas.
 - How do we involve all astronomers in China?
 - How do we get involved in TMT science programs? Volunteers in TMT working groups?
- Telescope Access Program
 - How do we run it fairly for the whole Chinese community?
- Second-generation instruments
- How and what can we propose? Multi-object fiber spectrographs, HROS

Thanks!

中国科学家的科学期望

一流的科学研究需要一流的设备

合作与竞争:中印分别加入TMT

2009年,国务委员刘延东 会见TMT高层管理代表, 表态支持中国科研机构参 与TMT的合作

2010年,印度总理辛格会 见TMT高层管理代表,表态 支持印度政府参与TMT的合 作

CTMT budget outline

based on Workshare Scenario Z-1(Nov. 2010)

Description	Subtotal	Annual Budget (MillionCNY)			
		2012	2013-2015	2016-2018	2019
Technical System					
M1 Polishing	272.7	80.0	83.0	83.0	26.7
M2 System	216.9	6.9	90.0	90.0	30.0
M3 System	32.0	2.0	12.0	12.0	6.0
Lasers	47.6	8.0	18.0	18.0	3.6
LGSF	76.2	17.2	27.0	27.0	5.0
WFOS	105.4	20.0	36.6	36.6	12.2
Contingency	71.4			41.4	30.0
Construction Cost for the Science Operation Center of CTMT	6.0	2.0	2.0	1.0	1.0
Subtotal of Technical System Cost	828.1	136.1	268.6	309.0	114.5
Common Fund	147.7	36.2	46.5	46.5	18.5
Infrastructure	91.0	51.0	40.0		
Subtotal of Construction Period	1066.8	359.4	623.7	664.5	247.5
Cost (2012-2019)					
Operation Cost (2020-2039)	459.7				
Total	1526.5				

Total for construction ~164M US\$, \sim 71M US\$ for 10% share operation