## Milky Way's Mass and Stellar Halo Velocity Dispersion Profiles

Sarah A. Bird Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang



| Halo     |  | Mass | 4 8 8.1 4 T  |
|----------|--|------|--------------|
|          |  |      |              |
| Contents |  |      | Concert Carl |



- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation

| Halo    |                        |                                | Mass                         | AN 82.147  |
|---------|------------------------|--------------------------------|------------------------------|------------|
|         |                        |                                |                              |            |
| I he IV | IIKV WAV (Bland-Hawtho | rn & Gerhard 2016. Helmi 2008. | Figure: NASA/JPL-Caltech/ES0 | O/R. Hurt) |

#### • Mass:

- Dark matter mass within  $\sim 250$  kpc  $\sim 10^{12} M_{\odot}$
- Visible mass  $\sim 10^{11} M_{\odot}$
- Visible mass:
  - Disk + bulge = 99%
  - Stellar halo = 1%
  - Stellar halo =  $\sim 1\%$  globular clusters + 99% stars
- Halo stars: old, metal-poor, large random motions



## Milky Way stellar halo

- Motivation to study the stellar halo:
  - Constrain galaxy formation
  - Properties of the old stellar populations
  - Find remnants of past mergers
  - Test cosmological models
  - Probe the dark matter halo



| Halo |  | Mass | AN 9 2.2 4 7 |
|------|--|------|--------------|
|      |  |      | /% 👝 🖉       |

# Milky Way stellar halo properties<sup>[1,2]</sup>

| Typical values for                                        | inner halo       | outer halo          |
|-----------------------------------------------------------|------------------|---------------------|
| Galactocentric radius <sup>[4]</sup>                      | < 20 kpc         | > 20 kpc            |
| $age^{[1]}$                                               | $> 10  { m Gyr}$ | $> 10  { m Gyr}$    |
| peak metallicity $[{ m Fe}/{ m H}]^{[3,4]}$               | -1.6  dex        | -2.2 dex            |
| metallicity range $[Fe/H]^{[3]}$                          | -4-0  dex        | -4-0  dex           |
| spatial distribution <sup>[4]</sup>                       | flattened        | spherical           |
| n, density profile $^{[4-7]} ho\propto r^{-n}$            | 2-4              | 2-4                 |
| kinematics <sup>[8,9,10,11]</sup>                         | radial + wiggle  | isotropic to radial |
| Galactic radial velocity dispersion <sup>[11,12,13]</sup> | 120 km/s         | declines to 50 km/s |

Halo Useful tracers of halo star kinematics Figure: Sandage83 Z = 0.0001 M 92 12 (m-M) = 14.42  $\alpha = 1.5$ Y = 0.20 E(B-V)=0.05 14 • giant stars 16 RR Lyrae v blue horizontal 18 branch stars

04

0.8

8 - V

20

22

o

2.0

1.2

16

## Stellar tracers of the halo

| Tracer Star | Number | Distance Range [kpc] | Survey             | Reference        |
|-------------|--------|----------------------|--------------------|------------------|
| K giant     | 6900   | 5 - 180              | LAMOST             | Bird+17          |
| K giant     | 6036   | 5 - 125              | SDSS/SEGUE         | Xue+14           |
| $BHB^{[1]}$ | 4664   | 5 - 60               | SDSS/SEGUE         | Kafle+12         |
| BHB         | 1933   | 16 - 48              | SDSS/SEGUE         | Deason+12        |
| BHB         | 4985   | 5 - 80               | SDSS/SEGUE         | Xue+11           |
| BHB         | 3549   | 10 - 50              | SDSS/SEGUE         | $Deason{+}11$    |
| BHB         | 666    | 20 - 100             | 2QZ Redshift       | De Propris+10    |
|             |        |                      | Survey             |                  |
| A-type      | 910    | 15 - 75              | Hypervelocity      | Brown+10         |
|             |        |                      | Star Survey        |                  |
| BHB         | 2558   | 5 - 60               | SDSS/SEGUE         | Xue+08           |
| BHB         | 1170   | 5 — 96               | SDSS/SEGUE         | Sirko+04         |
| BHB         | 700    | < 45                 | mixture of surveys | Sommer-Larsen+97 |

<sup>[1]</sup> blue horizontal branch

Halo

K giants

Kinematics

Mas



## Collecting more Milky Way halo stars!



LAMOST Photo Gallery

|          | K giants | Mass | 6 9 8.1 4 T     |
|----------|----------|------|-----------------|
|          |          |      |                 |
| Contonto |          |      | Concerce Carlos |
| Contents |          |      |                 |



- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation



Selection criteria:

- LAMOST Data Release 3
- $\bullet~4000 < {\rm T_{eff}/K} < 5600$
- surface gravity  $\log g < 4 \text{ dex}$
- $\bullet~$  exclusion of red clump stars based on  $Mg_b~$  lines  $_{\text{Liu}+14}$
- distance using method of Xue+14
- $|\mathrm{Z}| > 5 \text{ kpc}$
- $[{\rm Fe}/{\rm H}] < -1.3$  dex
- total: over 6900 K-giant spectra out to  $R_{\rm gc} = 200 \; \rm kpc$









## Number histogram of LAMOST halo K giants



|          | K giants | Kinematics | Mass | 61.9 2.1 4 A    |
|----------|----------|------------|------|-----------------|
|          |          |            |      |                 |
| Contonto |          |            |      | Consist Charles |
| Contents |          |            |      |                 |

## 1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
  - 4 Results: Galactic Mass Estimation





- Use velocities to exclude streams Double Gaussian fit:
  - broad Gaussian: smooth distribution of halo stars
  - narrow Gaussian: stellar stream
  - remove streams from further analysis
  - if amplitude of narrow Gaussian is smaller than 10% of the broad Gaussian, refit with a single Gaussian





## Line-of-sight velocity dispersion: observations

- Comparison between different tracer samples:
  - consistent results
  - Ilattened profile



|          |  | Mass | 61.9 2.1 4.7 A      |
|----------|--|------|---------------------|
|          |  |      |                     |
| Contents |  |      | The Denical Charles |
|          |  |      |                     |

## 1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation



• Jeans equation describes the motion of a collection of tracer particles in a galactic potential  $\frac{d\Phi}{dr}$ 

$$\frac{\mathrm{d}}{\mathrm{d}r}(\nu\sigma_r^2) + \frac{2\beta}{r}\nu\sigma_r^2 = \nu\frac{\mathrm{d}\Phi}{\mathrm{d}r}$$

- $\bullet~\sigma_{\rm r}$  radial and  $\sigma_{\rm t}$  tangential velocity dispersion profile
- anisotropy parameter  $\beta = 1 \frac{\sigma_{\theta}^2 + \sigma_{\phi}^2}{2\sigma_z^2} = 1 \frac{\sigma_t^2}{\sigma_z^2}$
- $\nu$  density profile of particles
- Virial theorem describes the system as a whole, relating together the average over time of the kinetic and potential energies. For example the system here is a galaxy.

$$\langle \mathbf{v}^2 \rangle = \left\langle \frac{GM}{r} \right\rangle$$



$$M_{\rm out} \approx rac{r_{
m out}^{0.5}(0.5 + \gamma - 2\beta)}{GN} \sum_{i=1}^{N} r_i^{0.5} v_{r,i}^2$$

- Estimates mass  $M_{\rm out}$  out to the distance  $r_{\rm out}$  of the furthest data point
- Observations of N number of halo tracers
  - radial velocity v<sub>r</sub>
  - galactocentric distance r
- Assumptions
  - simplest case dynamics: spherical system traced by a non-rotating relaxed population in equilibrium
  - Navarro-Frenk-White dark halo density profile
  - tracer number density  $\propto r^{-\gamma}$  with  $\gamma \approx$  4  $_{\rm Xu+17}$
  - velocity isotropy ( $\beta = 0$ )





## Milky Way mass: LAMOST + SEGUE





### Milky Way circular velocity profile



|          |  | Mass | 019 2.1 4 T    |
|----------|--|------|----------------|
|          |  |      |                |
| Contonto |  |      | A Denical Call |
| Contents |  |      |                |

## 1 Stellar Halos

- 2 LAMOST K-Giant Halo Stars
- 3 Results: Kinematics
- 4 Results: Galactic Mass Estimation



Summary:

- LAMOST contributes to over half our sample of > 10<sup>4</sup> K-giants
- Flattened velocity dispersion profile
- Galactic mass estimate with LAMOST+SEGUE
- Galactic circular velocity profile with LAMOST+SEGUE
- $\bullet~\mbox{Collect} \sim 10^4$  halo stars with LAMOST
- Combine LAMOST+*Gaia* to measure 3D velocities

## email: sarahbird@shao.ac.cn



