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l. Introduction

v [C 1] 158 um and ISM

INTRODUCTION
* - 2P3p — 2P

- In cold regions, cooling is dominated by collisional excitation of C+ by
collisions with other particles (e.g, H or free electrons and protons).
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l. Introduction

v CI11036, 1037 Doublet
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l. Introduction

v C 111036, 1037 Doublet

- The CII 1036, 1037 photons are incident on H | in the ground state to
excite them in an intermediate level.
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l. Introduction

v Raman-scattered C Il Lines

The H | de-excite to 2S level with re-emission of an optical photon with
center wavelength at 7025 and 7052, respectively.

* INTRODUCTION

o )
/I OBSERVATION - C 111036 — Raman scattering by H | = Raman C Il at 7023.24 A
SIMULATION - C 111037 — Raman scattering by H | = Raman C Il at 7053.30 A
@ oiscussion
/ 38
i 28
A*‘\:
EAYAM 2017 \

@ Ishigaki Island, Japan P
Nov. 14, 2017 o s p




l. Introduction

v Raman-scattered C Il Lines

* INTRODUCTION

- Only detected in the symbiotic nova V1016 Cyg (Schild & Schmid, 1996)
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Fig. 6. C 11 Raman features in the spectrum of V 1016 Cyg obtained in
September 1994.
EAYAM 2017

@ Ishigaki Island, Japan
Nov. 14, 2017




* INTRODUCTION

\
ﬁ\ OBSERVATION

SIMULATION

@ DISCUSSION

EAYAM 2017

@ Ishigaki Island, Japan
Nov. 14, 2017

Il. Observation

v RR Telescopii

D(Dusty)-type symbiotic nova consisting of a Mira variable
and a white dwarf (Whitelock 2003)

After a nova-like outburst in 1944, its brightness is slowly
fading from its peak V~7mag in 1946 to V~11.5 mag in 2017.

Distance ~ 2.6 Kpc (Schmid & Schild 2002)
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Basic Parameters for RR Tel :
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(Feast et al. 1983; Murset & Schmid 1999; Gromadzki et al. 2009)
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Il. Observation

v MIKE High Resolution Spectroscopy

- The Magellan Inamori Kyocera Echelle (MIKE)

- 6.5m Clay Telescope, Las Campanas Observatory, Chile

- Spectral Coverage: (Blue) 3,350~5,000 A (Red) 4,900~9,500 A
- Resolving Power (Blue) R ~ 27,000 (Red) R~ 35,500

- Observing Date: 30, July, 2016

- Exposure Time: 2000 sec




Il. Observation

v Raman-scattered C Il Lines in RR Tel
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lll. Raman C |l and ISM

v Incident Far-UV C 1l 1036,1037 Emissions

Incident C II Raman C |l
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lll. Raman C |l and ISM

v Incident Far-UV C 1l 1036,1037 Emissions

Incident C II Raman C |l

F(Raman 7023)
6.01x107 erg cm2s 1A

F(Raman 7053)
6.74x1074 erg cm2s A"

Fir:(1036)
3.15x10 M erg cm2s 1A

4.19x10M erg cm2s1 Al

Raman
Conversion
Efficiencies

n(1036->7023)
0.12

n(1037->7053)
0.10




lll. Raman C |l and ISM

v Comparison with FUSE data
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v A significant amount of C Il 1036 and 1037 A emissions are expected,
however they are clearly absent in FUSE data.
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lll. Raman C |l and ISM

v C Il 1335 Multiplet in IUE Spectrum
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lll. Raman C |l and ISM
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lll. Raman C |l and ISM

v C Il 1335 Multiplet in IUE Spectrum
- 2s2p? 2D — 2s°2p 2PO:

Fint(1335) = Fint(1036) X Y1335/ Y1036
7.41x10 " erg cm2s1A1~167 Fops(1335)

Fint(1336) = Fint(1037) X Y1336/ Y1037
1.425x1070 erg cm2s' A--1~200 Fops(1336)
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lll. Raman C |l and ISM

v Optical depth of C Il emissions

Tzln(Fint/Fobs)

t(1335) ~ 5.1

t(1336) ~ 5.3




lll. Raman C |l and ISM

A v Optical depth of C Il emissions
INTRODUCTION
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lll. Raman C |l and ISM

A v Optical depth of C Il emissions
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lll. Raman C |l and ISM

v Extinction of ISM

- Considering a long distance d ~ 2.5kpc of RR Tel, it can be originated
from the heavy extinction along ISM.

INTRODUCTION
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- N(CII) ~9.87x1013cm-2
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IV. Summary and Discussion

v We find two Raman-scattered features of C Il at 7023 and 7053
A in the high-resolution spectrum of the symbiotic nova RR Tel.

v A significant amount of C 1l 1036 and 1037 A emissions are
expected, however they are clearly absent in FUSE data.

v By comparing with other observed C Il emissions in I[UE data,
we conclude that the discrepancy between the observed data
and the theoretical expectation is originated from the heavy
extinction along ISM.

v We determine the lower limit of the column density of C Il in
ISM N(CII) ~ 9.87x1013cm-2.
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l. Introduction

The progenitor of a Type la supernova
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gas onto the white dwarf. critical mass and explodes... star to be ejected away.




l. Introduction

The progenitor of a Type la supernova
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l. Introduction

v Symbiotic Stars

- Binary systems consisting of a hot radiation source, usually
white dwarf, and a cool, mass losing giant

- A fraction of the slow stellar wind from the giant is
gravitationally captured by the white dwarf to presumable form

an accretion disk.

© Anglo-Australian Observatory
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l. Introduction

v Raman Scattering
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- A far-UV photon blueward of Lya is Raman Scattering
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l. Introduction

v Raman Scattering in Symbiotic Stars

- The white dwarf accretes a fraction of the stellar wind from the

giant, which makes it very hot (~1O5 K) and luminous(~1 02-104
Lsun), and thus capable of ionizing the neutral wind from the giant.
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l. Introduction

v Raman Scattering in Symbiotic Stars

- The white dwarf accretes a fraction of the stellar wind from the

giant, which makes it very hot (~1O5 K) and luminous(~1 02-104
Lsun), and thus capable of ionizing the neutral wind from the giant.
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Il. Observation

v Raman Lines in RR Tel

- We find seven broad features at 4332, 4850, 6545, 6825,
7025, 7052 and 7082 A, which are formed through Raman-
scattering of He Il, C [l and O VI by H I.

Figure 2. Low-resolution optical spectrum of RR Tel (ESO 1.5m + B&C,
Munari & Zwitter, 2002).
Green lines indicate the positions of the observed Raman-scattered lines.
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Il. Observation

v Raman Lines in RR Tel
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Il. Observation

v Raman Lines in RR Tel
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l1l. Monte Carlo Simulations

v STB ionization front

In STB (Seaquist, Taylor & Button, 1984) model, the ionization front
In the stellar wind region around the giant is determined by the
balance of photoionization by the H-ionizing flux from the hot
component and recombination represented by the mass loss

rate of the giant.

A parameter X in STB geometry is given by X = 4ralLn/
aB(mHVoo/M)z.




lll. Raman C |l and ISM

v C Il 1335 Triplet

* INTRODUCTION

Table 4. C II emissions

\
f,\ OBSERVATION

Transition A T2 Arb F s F;,
SIMULATION ) t
2522p  252p? (A) T =10%K (s71) (erg cm™2 s71) (erg cm™2 s71)
@ DISCUSSION PPy *S1p 1036.34  0.608  7.971 x 10° 3.15 x 10~
2PYy 2S1p 1037.02  1.222 1575 x 10° 419 x 10-11

Py *Dsjp 133453 1431  2.567 x 10° 443 x 107" 7.41x107H
2P§/3 ?Dgjs 1335.66  1.058 5.08 x 107  7.15x 10713 1.425 x 10710
°P);3 *Dsjp 133571 3.098  3.067 x 10°

@Tayal 2008
ONIST database

EAYAM 2017

@ Ishigaki Island, Japan
Nov. 14, 2017




* INTRODUCTION

\
f,\ OBSERVATION

SIMULATION

@ DISCUSSION

EAYAM 2017

@ Ishigaki Island, Japan
Nov. 14, 2017

l1l. Monte Carlo Simulations

v Hierarchical Emission Region Model

In order to reproduce the Raman-scattered line profiles, we
suggest that the emission nebulae around the white dwarf has
a hierarchical structure including inner most part with O
VI disk and the outer part with C Il and He Il sphere, which
IS consistent with the higher ionization potential of O VI than

those of He |l and C IlI.

Emission Reqlown

C 11 Halo
He II Halo
0 VI Disk

White Dwarf

Figure 4. An ionization structure with STB Geometry (left)
and schematic model for the emission nebula around the WD (right)
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l1l. Monte Carlo Simulations

Raman He Il

" M.C Result

Flux[erg cm™ s~ [A]”

- A good fit is obtained for the mass loss rate M ~ 3 x 10-6 Me/yr
and v« =10 km/s, which corresponds to X ~ 7.5.

- Raman lines are well fitted with hierarchical emission region
composed of the O VI disk extending 1AU and the He |l and C Il
spheres with a size of sub AU.
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l1l. Monte Carlo Simulations

v STB ionization front

In STB (Seaquist, Taylor & Button, 1984) model, the ionization front
In the stellar wind region around the giant is determined by the
balance of photoionization by the H-ionizing flux from the hot
component and recombination represented by the mass loss

rate of the giant.

A parameter X in STB geometry is given by X = 4ralLn/
aB(mHVoo/M)z.




