

MIKE High Resolution Observation and Raman-scattering by Atomic Hydrogen in the Symbiotic Nova RR Telescopii

Jeong-Eun Heo¹, Hee-Won Lee¹, Rodolfo Angeloni², Tali Palma³, Francesco Di Miile⁴

¹ Sejong University, Korea ² Universidad de La Serena, Chile ³ Observatorio Astronómica, Argentina ⁴ Las Campanas Observatory, Chile

Área de Astronomía Departamento de Física y Astronomía - Universidad de La Seri

- [C II] 158 µm
- C II 1036, 1037 Doublet
- Raman-Scattered C II Lines

II. Observation

- RR Tel
- MIKE Spectroscopy
- Raman Lines in RR Tel

III. Raman C II and ISM

- Incident C II 1036, 1037 Emissions
- C II 1335 Triplet
- Optical Depth of C II Emissions
- Extinction of ISM

IV. Summary and Discussion

✓ [C II] 158 µm and ISM

- 2P_{3/2} 2P_{1/2}: **157.74 μm**
- In cold regions, cooling is dominated by collisional excitation of C+ by collisions with other particles (e.g, H or free electrons and protons).
- An efficient and dominating coolant for neutral gas

- 2S 2P² ²S_{1/2} 2S² 2P¹ ²P⁰_{1/2} : 1036.337 Å
- 2S 2P² ²S_{1/2} 2S² 2P¹ ²P⁰_{3/2}: 1037.018 Å

✓ C II 1036, 1037 Doublet

- The CII 1036, 1037 photons are incident on H I in the ground state to excite them in an intermediate level.

EAYAM 2017

@ Ishigaki Island, Japan Nov. 14, 2017

✓ Raman-scattered C II Lines

- The H I de-excite to 2S level with re-emission of an optical photon with center wavelength at 7025 and 7052, respectively.
- C II 1036 → Raman scattering by H I → Raman C II at 7023.24 Å
- **C II 1037** \rightarrow Raman scattering by H I \rightarrow Raman C II at 7053.30 Å

✓ Raman-scattered C II Lines

Only detected in the symbiotic nova V1016 Cyg (Schild & Schmid, 1996)

Fig. 6. C II Raman features in the spectrum of V 1016 Cyg obtained in September 1994.

公	INTRODUCTION
	OBSERVATION

DISCUSSION

✓ RR Telescopii

- D(Dusty)-type symbiotic nova consisting of a Mira variable and a white dwarf (Whitelock 2003)
- After a nova-like outburst in 1944, its brightness is slowly fading from its peak V~7mag in 1946 to V~11.5 mag in 2017.
- Distance ~ 2.6 kpc (Schmid & Schild 2002)

Basic Parameters for RR Tel

(Feast et al. 1983; Mürset & Schmid 1999; Gromadzki et al. 2009)

Gromadzki et al. (2009)

✓ MIKE High Resolution Spectroscopy

- The Magellan Inamori Kyocera Echelle (MIKE)
- 6.5m Clay Telescope, Las Campanas Observatory, Chile
- Spectral Coverage: (Blue) 3,350~5,000 Å (Red) 4,900~9,500 Å
- Resolving Power (Blue) R ~ 27,000 (Red) R~ 35,500
- Observing Date: 30, July, 2016
- Exposure Time: 2000 sec

INTRODUCTION

Raman C II F(Raman 7023) 6.01x10⁻¹⁴ erg cm⁻² s⁻¹ Å⁻¹

F(Raman 7053) 6.74x10⁻¹⁴ erg cm⁻² s⁻¹ Å⁻¹

III. Raman C II and ISM

✓ Incident Far-UV C II 1036,1037 Emissions INTRODUCTION OBSERVATION **Incident C II** Raman C II F(Raman 7023) 6.01x10⁻¹⁴ erg cm⁻² s⁻¹ Å⁻¹ DISCUSSION **T** F(Raman 7053) 6.74x10⁻¹⁴ erg cm⁻² s⁻¹ Å⁻¹ Raman Conversion **Efficiencies**

INTRODUCTION

III. Raman C II and ISM

@ Ishigaki Island, Japan Nov. 14, 2017

III. Raman C II and ISM

✓ A significant amount of C II 1036 and 1037 Å emissions are expected, however they are clearly absent in FUSE data.

III. Raman C II and ISM

✓ C II 1335 Multiplet in IUE Spectrum

- 2s2p² ²D - 2s²2p ²P⁰: **1334.53, 1335.66 and 1335.71Å**

F_{obs}(1335) 4.43x10⁻¹³ erg cm⁻² s⁻¹ Å⁻¹ **F**_{obs}(1336) 7.15x10⁻¹³ erg cm⁻² s⁻¹ Å⁻¹

INTRODUCTION

OBSERVATION

DISCUSSION

T

III. Raman C II and ISM

✓ C II 1335 Multiplet

- 2s2p² ²D - 2s²2p ²P⁰: **1334.53, 1335.66 and 1335.71Å**

III. Raman C II and ISM

✓ C II 1335 Multiplet in IUE Spectrum

- 2s2p² ²D - 2s²2p ²P⁰: **1334.53, 1335.66 and 1335.71Å**

$$F_{ij} = F_{ik} \times \frac{\Upsilon_{ij}}{\Upsilon_{ik}}$$

 $F_{int}(1335) = F_{int}(1036) \times Y_{1335}/Y_{1036}$ 7.41x10⁻¹¹ erg cm⁻² s⁻¹ Å⁻¹ ~167 $F_{obs}(1335)$

 $F_{int}(1336) = F_{int}(1037) \times Y_{1336}/Y_{1037}$ 1.425x10⁻¹⁰ erg cm⁻² s⁻¹ Å⁻¹⁻¹¹~200 $F_{obs}(1336)$

III. Raman C II and ISM

✓ Optical depth of C II emissions

τ=In(**F**_{int/}**F**_{obs})

 $\tau(1335) \sim 5.1$

 $\tau(1336) \sim 5.3$

 \swarrow

Tip

III. Raman C II and ISM

✓ Optical depth of C II emissions

 \checkmark

T

III. Raman C II and ISM

Expected Spectrum IUE data

Expected Spectrum FUSE(2002-06-14)

1037

^{1036.6} λ[Å]

1036.2

1036.4

1036.8

1037

1037.2

1037.4

1336

III. Raman C II and ISM

✓ Extinction of ISM

- Considering a long distance d ~ 2.5kpc of RR Tel, it can be originated from the heavy extinction along ISM.
- The column density is expressed by the optical depth and the cross section: N(C II) = τ / σ
 - N(CII) ~ 9.87x10¹³cm⁻²

-

IV. Summary and Discussion

- ✓ We find two Raman-scattered features of C II at 7023 and 7053 Å in the high-resolution spectrum of the symbiotic nova RR Tel.
- ✓ A significant amount of C II 1036 and 1037 Å emissions are expected, however they are clearly absent in FUSE data.
- ✓ By comparing with other observed C II emissions in IUE data, we conclude that the discrepancy between the observed data and the theoretical expectation is originated from the heavy extinction along ISM.
- ✓ We determine the lower limit of the column density of C II in ISM N(CII) ~ 9.87x10¹³cm⁻².

ΠÞ

I. Introduction

Symbiotic Stars

- Binary systems consisting of a hot radiation source, usually white dwarf, and a cool, mass losing giant
- A fraction of the slow stellar wind from the giant is gravitationally captured by the white dwarf to presumable form an accretion disk.

SPH Simulation (Mastrodemos and Morris, 1998)

EAYAM 2017 @ Ishigaki Island, Japan

Nov. 14, 2017

✓ Raman Scattering

- A far-UV photon blueward of Lyα is incident upon a hydrogen atom in the ground state. Subsequently, the hydrogen atom de-excites into the 2s state, re-emitting an optical Ramanscattered photon.
- Based on the principle of Energy conservations

$$h\nu_i = h\nu_o + h\nu_\alpha$$

- The re-emission of a photon has significantly longer wavelength than incident photon.

$$\lambda_{RV} = rac{\lambda_{Lylpha}\lambda_i}{\lambda_{Lylpha} - \lambda_i}$$
 ($\lambda_{Lylpha} = 1215.67 \text{\AA}$)

Schematic energy level diagram for Raman-Scattering by H I

EAYAM 2017 @ Ishigaki Island, Japan Nov. 14, 2017

✓ Raman Scattering in Symbiotic Stars

- The white dwarf accretes a fraction of the stellar wind from the giant, which makes it very hot ($\sim 10^5$ K) and luminous($\sim 10^2 - 10^4$ L_{sun}), and thus capable of ionizing the neutral wind from the giant.

EAYAM 2017 @ Ishigaki Island, Japan Nov. 14, 2017

✓ Raman Scattering in Symbiotic Stars

The white dwarf accretes a fraction of the stellar wind from the giant, which makes it very hot ($\sim 10^5$ K) and luminous($\sim 10^2 - 10^4$ L_{sun}), and thus capable of ionizing the neutral wind from the giant.

The environment of symbiotic stars is very suitable for observing the Raman-scattering process.

✓ Raman Lines in RR Tel

- We find seven broad features at 4332, 4850, 6545, 6825, 7025, 7052 and 7082 Å, which are formed through Raman-scattering of He II, C II and O VI by H I.

Figure 2. Low-resolution optical spectrum of RR Tel (ESO 1.5m + B&C, Munari & Zwitter, 2002). Green lines indicate the positions of the observed Raman-scattered lines.

SIMULATION

DISCUSSION

 \mathbf{x}

 \swarrow

Ē

II. Observation

Raman Lines in RR Tel \checkmark

INTRODUCTION

OBSERVATION

SIMULATION

DISCUSSION

Ń

\$

Ē

II. Observation

✓ Raman Lines in RR Tel

INTRODUCTION

DISCUSSION

✓ STB ionization front

- In STB (Seaquist, Taylor & Button, 1984) model, the ionization front in the stellar wind region around the giant is determined by the balance of photoionization by the H-ionizing flux from the hot component and recombination represented by the mass loss rate of the giant.
- A parameter X in STB geometry is given by $X = 4\pi a L_H / \alpha_B (m_H v_{\infty} / \dot{M})^2$.

Figure 4. An ionization structure with STB Geometry (left)

OBSERVATION

DISCUSSION

Ē

III. Raman C II and ISM

✓ C II 1335 Triplet

Table 4. C II emissions								
Trans	sition	λ	Υ^{a}	$A_L^{\mathbf{b}}$	F_{obs}	F_{int}		
$2s^22p$	$2s2p^2$	(Å)	$T=10^4 {\rm K}$	(s^{-1})	$({\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1})$	$({\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1})$		
$^{2}P_{1/2}^{0}$	${}^{2}S_{1/2}$	1036.34	0.608	7.971×10^8		3.15×10^{-11}		
${}^{2}P_{2/3}^{0}$	${}^{2}S_{1/2}$	1037.02	1.222	1.575×10^9		4.19×10^{-11}		
${}^{2}P_{1/2}^{0}$	${}^{2}D_{3/2}$	1334.53	1.431	2.567×10^8	4.43×10^{-13}	7.41×10^{-11}		
${}^{2}P_{2/3}^{0}$	${}^{2}D_{3/2}$	1335.66	1.058	5.08×10^7	7.15×10^{-13}	1.425×10^{-10}		
${}^2P^0_{2/3}$	${}^{2}D_{5/2}$	1335.71	3.098	3.067×10^8				
aTaval 2008								

aTayal 2008

 b NIST database

DISCUSSION

Hierarchical Emission Region Model

In order to reproduce the Raman-scattered line profiles, we suggest that the emission nebulae around the white dwarf has a hierarchical structure including inner most part with O VI disk and the outer part with C II and He II sphere, which is consistent with the higher ionization potential of O VI than those of He II and C II.

Figure 4. An ionization structure with STB Geometry (left) and schematic model for the emission nebula around the WD (right)

- A good fit is obtained for the mass loss rate M ~ 3 x 10⁻⁶ M☉/yr and v_∞ =10 km/s, which corresponds to X ~ 7.5.
- Raman lines are well fitted with hierarchical emission region composed of the O VI disk extending 1AU and the He II and C II spheres with a size of sub AU.

SIMULATION

DISCUSSION

 \checkmark

ΠÞ

INTRODUCTION

OBSERVATION

INTRODUCTION

DISCUSSION

✓ STB ionization front

- In STB (Seaquist, Taylor & Button, 1984) model, the ionization front in the stellar wind region around the giant is determined by the balance of photoionization by the H-ionizing flux from the hot component and recombination represented by the mass loss rate of the giant.
- A parameter X in STB geometry is given by $X = 4\pi a L_H / \alpha_B (m_H v_{\infty} / \dot{M})^2$.

Figure 4. An ionization structure with STB Geometry (left)

