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I. Introduction

✓ [C II] 158 μm and ISM
- 2P3/2 — 2P1/2 : 157.74 μm
- In cold regions, cooling is dominated by collisional excitation of C+ by 

collisions with other particles (e.g, H or free electrons and protons).
- An efficient and dominating coolant for neutral gas
- Powerful spectral diagnostics of ISM
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✓ C II 1036, 1037 Doublet
- 2S 2P2  2S1/2 — 2S2 2P1 2P01/2 : 1036.337 Å
- 2S 2P2  2S1/2 — 2S2 2P1 2P03/2: 1037.018 Å
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I. Introduction

✓ C II 1036, 1037 Doublet
- The CII 1036, 1037 photons are incident on H I in the ground state to 

excite them in an intermediate level. 
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✓ Raman-scattered C II Lines
- The H I de-excite to 2S level with re-emission of an optical photon with 

center wavelength at 7025 and 7052, respectively.
- C II 1036 → Raman scattering by H I → Raman C II at 7023.24 Å
- C II 1037 → Raman scattering by H I → Raman C II at 7053.30 Å
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I. Introduction

✓ Raman-scattered C II Lines
- Only detected in the symbiotic nova V1016 Cyg (Schild & Schmid, 1996)
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II. Observation

✓  RR Telescopii
- D(Dusty)-type symbiotic nova consisting of a Mira variable 

and a white dwarf (Whitelock 2003)
- After a nova-like outburst in 1944, its brightness is slowly 

fading from its peak V∼7mag in 1946 to V∼11.5 mag in 2017. 
- Distance ~ 2.6 kpc (Schmid & Schild 2002)

Basic Parameters for RR Tel  
(Feast et al. 1983; Mürset & Schmid 1999; Gromadzki et al. 2009) Gromadzki et al. (2009)
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II. Observation

✓  MIKE High Resolution Spectroscopy
- The Magellan Inamori Kyocera Echelle (MIKE)
- 6.5m Clay Telescope, Las Campanas Observatory, Chile
- Spectral Coverage: (Blue) 3,350~5,000 Å (Red) 4,900~9,500 Å
- Resolving Power (Blue) R ~ 27,000 (Red) R~ 35,500
- Observing Date: 30, July, 2016
- Exposure Time: 2000 sec
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✓   Raman-scattered C II Lines in RR Tel

II. Observation
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III. Raman C II and ISM

✓ Incident Far-UV C II 1036,1037 Emissions
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✓ Incident Far-UV C II 1036,1037 Emissions

F(Raman 7023)   
6.01x10-14 erg cm-2 s-1 "-1  

F(Raman 7053)   
6.74x10-14 erg cm-2 s-1 "-1 

Raman C II
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η(1037->7053) 
0.10
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Efficiencies

Fint(1036)   
3.15x10-11 erg cm-2 s-1 "-1  

Fint(1037)   
4.19x10-11 erg cm-2 s-1 "-1 

Incident C II

III. Raman C II and ISM
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✓ Comparison with FUSE data

Fint(1036)   
3.15x10-11 erg cm-2 s-1 "-1  

Fint(1037)   
4.19x10-11 erg cm-2 s-1 "-1 
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✓ A significant amount of C II 1036 and 1037 Å emissions are expected, 
however they are clearly absent in FUSE data. 

III. Raman C II and ISM
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✓ C II 1335 Multiplet in IUE Spectrum
- 2s2p2 2D — 2s22p 2P0: 1334.53, 1335.66 and 1335.71Å   
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✓ C II 1335 Multiplet
- 2s2p2 2D — 2s22p 2P0: 1334.53, 1335.66 and 1335.71Å   

III. Raman C II and ISM

Fint(1335) = Fint(1036) x Υ1335/Υ1036 

Fint(1336) = Fint(1037) x Υ1336/Υ1037  
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✓ C II 1335 Multiplet in IUE Spectrum
- 2s2p2 2D — 2s22p 2P0: 1334.53, 1335.66 and 1335.71Å   

III. Raman C II and ISM

Fint(1335) = Fint(1036) x Υ1335/Υ1036 
7.41x10-11 erg cm-2 s-1 "-1 ~167 Fobs(1335) 

Fint(1336) = Fint(1037) x Υ1336/Υ1037  
1.425x10-10 erg cm-2 s-1 "-1-11~200 Fobs(1336) 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✓ Optical depth of C II emissions

III. Raman C II and ISM

𝛕(1335) ~ 5.1 

𝛕(1336) ~ 5.3 

𝛕=ln(Fint/Fobs)
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𝛕(1036) ~ 15.81 

𝛕(1037) ~ 27.24 

✓ Optical depth of C II emissions

III. Raman C II and ISM

𝛕(1335) ~ 5.1 

𝛕(1336) ~ 5.3 

𝛕=ln(Fint/Fobs)
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𝛕(1036) ~ 15.81 

𝛕(1037) ~ 27.24 

✓ Optical depth of C II emissions

III. Raman C II and ISM

𝛕(1335) ~ 5.1 

𝛕(1336) ~ 5.3 

𝛕=ln(Fint/Fobs)
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✓ Extinction of ISM
- Considering a long distance d ~ 2.5kpc of RR Tel, it can be originated 

from the heavy extinction along ISM. 
- The column density is expressed by the optical depth and the cross 

section: N(C II) = 𝛕 / σ

- N(CII) ~ 9.87x1013cm-2

III. Raman C II and ISM
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IV. Summary and Discussion

✓ We find two Raman-scattered features of C II at 7023 and 7053 
Å in the high-resolution spectrum of the symbiotic nova RR Tel. 

✓ A significant amount of C II 1036 and 1037 Å emissions are 
expected, however they are clearly absent in FUSE data. 

✓ By comparing with other observed C II emissions in IUE data, 
we conclude that the discrepancy between the observed data 
and the theoretical expectation is originated from the heavy 
extinction along ISM.

✓ We determine the lower limit of the column density of C II in 
ISM N(CII) ~ 9.87x1013cm-2.



THANKS
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I. Introduction

✓  Symbiotic Stars
- Binary systems consisting of a hot radiation source, usually 

white dwarf, and a cool, mass losing giant

- A fraction of the slow stellar wind from the giant is 
gravitationally captured by the white dwarf to presumable form 
an accretion disk.

Hen2-104,  CH Cyg
 

R Aqr        HM Sge

SPH Simulation (Mastrodemos and Morris, 1998) 
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I. Introduction

✓  Raman Scattering
- A far-UV photon blueward of Lyα is 

incident upon a hydrogen atom in the 
ground state. Subsequently, the 
hydrogen atom de-excites into the 2s 
state, re-emitting an optical Raman-
scattered photon.

- Based on the principle of Energy 
conservations

- The re-emission of a photon has 
significantly longer wavelength 
than incident photon.

Ly β 1025
(1s → 3p) 

Hα 6563
 (3p →2s)

Schematic energy level diagram  
for Raman-Scattering by H I 



INTRODUCTION

OBSERVATION

SIMULATION

@ Ishigaki Island, Japan

Nov. 14, 2017 

DISCUSSION

EAYAM 2017

I. Introduction

✓  Raman Scattering in Symbiotic Stars
- The white dwarf accretes a fraction of the stellar wind from the 

giant, which makes it very hot (~105 K) and luminous(~102-104 
Lsun), and thus capable of ionizing the neutral wind from the giant. 
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I. Introduction

✓  Raman Scattering in Symbiotic Stars
- The white dwarf accretes a fraction of the stellar wind from the 

giant, which makes it very hot (~105 K) and luminous(~102-104 
Lsun), and thus capable of ionizing the neutral wind from the giant. 

The environment of symbiotic stars is very suitable  

for observing the Raman-scattering process.
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II. Observation

✓   Raman Lines in RR Tel
- We find seven broad features at 4332, 4850, 6545, 6825, 

7025, 7052 and 7082 Å, which are formed through Raman-
scattering of He II, C II and O VI by H I.

HαHβHγ

Figure 2. Low-resolution optical spectrum of RR Tel (ESO 1.5m + B&C, 
Munari & Zwitter, 2002). 

Green lines indicate the positions of the observed Raman-scattered lines.
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✓   Raman Lines in RR Tel

II. Observation
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II. Observation

✓   Raman Lines in RR Tel
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III. Monte Carlo Simulations

✓ STB ionization front
- In STB (Seaquist, Taylor & Button, 1984) model, the ionization front 

in the stellar wind region around the giant is determined by the 
balance of photoionization by the H-ionizing flux from the hot 
component and recombination represented by the mass loss 
rate of the giant. 

- A parameter X in STB geometry is given by X = 4πaLH/
αB(mHv∞/Ṁ)2.

Figure 4. An ionization structure with STB Geometry (left)
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✓ C II 1335 Triplet

III. Raman C II and ISM



INTRODUCTION

OBSERVATION

SIMULATION

DISCUSSION

@ Ishigaki Island, Japan

Nov. 14, 2017 

EAYAM 2017

III. Monte Carlo Simulations

✓  Hierarchical Emission Region Model
- In order to reproduce the Raman-scattered line profiles, we 

suggest that the emission nebulae around the white dwarf has 
a hierarchical structure including inner most part with O 
VI disk and the outer part with C II and He II sphere, which 
is consistent with the higher ionization potential of O VI than 
those of He II and C II.

Figure 4. An ionization structure with STB Geometry (left) 
and schematic model for the emission nebula around the WD (right)
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III. Monte Carlo Simulations
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- A good fit is obtained for the mass loss rate Ṁ ~ 3 x 10-6 M /yr 
and v∞ =10 km/s, which corresponds to X ~ 7.5. 

- Raman lines are well fitted with hierarchical emission region 
composed of the O VI disk extending 1AU and the He II and C II 
spheres with a size of sub AU.
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III. Monte Carlo Simulations

✓ STB ionization front
- In STB (Seaquist, Taylor & Button, 1984) model, the ionization front 

in the stellar wind region around the giant is determined by the 
balance of photoionization by the H-ionizing flux from the hot 
component and recombination represented by the mass loss 
rate of the giant. 

- A parameter X in STB geometry is given by X = 4πaLH/
αB(mHv∞/Ṁ)2.

Figure 4. An ionization structure with STB Geometry (left)


