The Nearby Evolved Stars Survey The gas and dust return to the Galactic ISM

Peter Scicluna

Ishigaki

EAYAM, 15th November 2017

Key collaborators: F. Kemper, S. Srinivasan, S. Wallström, (ASIAA, Taiwan); I. McDonald (Manchester, UK); J. Greaves (Cardiff, UK); O. Jones (Edinburgh, UK); J. Wouterloot (EAO); J. He (YNAO & CASSACA, China); J. Cami (UWO, Canada); H. Shinnaga (Kagoshima, Japan); Se-Hyung Cho (KASI, Korea) and the NESS team

Evolved stars, mass loss and the lifecycle of matter

AGB stars

The dust and gas return to the Galactic interstellar medium

Led by ASIAA, including > 70 members from all EAO regions, CfA, and Europe 39 nearest dusty AGB stars + wedding-cake survey within 2 kpc (300 stars) $\Rightarrow 1^{st}$ volume–limited survey of Galactic AGB stars Multiple telescopes, multiple transitions

The Nearby Evolved Stars Survey

The dust and gas return to the Galactic interstellar medium

39 nearest dusty AGB stars + wedding-cake survey within 2 kpc (300 stars)

 \Rightarrow 1st volume–limited survey of Galactic AGB stars

Multiple telescopes, multiple transitions

- 50 hrs JCMT S17A (complete, PI: P. Scicluna)
- 515 hour JCMT Large program (2017-2020, PI: P. Scicluna)
- 21 hrs ASTE (approved, PI: S. Wallstrom)

The Nearby Evolved Stars Survey

The dust and gas return to the Galactic interstellar medium

39 nearest dusty AGB stars + wedding-cake survey within 2 kpc (300 stars)

 \Rightarrow 1 $^{\rm st}$ volume–limited survey of Galactic AGB stars Multiple telescopes, multiple transitions

- 50 hrs JCMT S17A (complete, PI: P. Scicluna)
- 515 hour JCMT Large program (2017-2020, PI: P. Scicluna)
- 21 hrs ASTE (approved, PI: S. Wallstrom)

 ${\sf Proposed/planning:}$

- ALMA (PI: S. Srinivasan)
- APEX (PI: S. Wallstrom)
- SMA

JCMT Large programs

- EAO: new organisation, new community
- JCMT: Still very powerful (largest sub-mm telescope, fast mapping)
 - Build large (\gtrsim 50 people) collaborations
 - Large projects (>200 hours)
 - Must include members from all EAO/JCMT regions
- Two rounds so far (every ~ 1.5 years)
- Most recent round approved 2017 (including NESS)
- Run until 2020
- Open to anyone in JCMT regions (get in touch if you want to join us!)

NESS: Objectives

- Total gas and dust return to local ISM
- Gas-to-dust ratios
- Physics of mass loss
- Sub-mm dust properties
- Mass-loss history
- ¹³CO / ¹²CO
- Galactic AGB population

Total gas and dust return to local ISM

Measuring (dust) mass return

- E.g. SAGE
- Find dusty (MIR-bright) sources
- Classify -YSOs/AGB/RSG etc. & chemisty
- Compute DPR
 - Empirical relations
 - radiative transfer
- Add up all contributors
- Dominated by extreme AGBs

• Last attempt: Gehrz 1989

- SCUBA-2: total dust mass
 - Cold dust
 - Presentday mass-loss from mid-IR

S. Srinivasan

CO Lines as a mass-loss tracer

- e.g. Knapp & Morris 1985
 - Multiple CO line profiles
 - Radiative transfer (comoving frame)
 - fit T(R), $v \& \dot{M}$
 - Still need assumptions, e.g. $\frac{CO}{H_2}$
 - HARP & RxA: gas mass loss
 - 12 & 13CO lines
 - Low-J lines \rightarrow compare with cold dust
 - Only really possible for Galactic sources

 $\label{eq:NESS} \texttt{Point} \ \texttt{NESS} \ \texttt{Point} \ \texttt{Dust} \ \texttt{and} \ \texttt{Gas} \ \texttt{return} \ \texttt{for volume-limited sample!} \ -$ Improve on Knapp 1985 measure of dust-to-gas ratio too.

Physics of mass loss

Wind driving

. . .

- outflow velocity
- \rightarrow pulsation/dust
- momentum-transfer efficiency
- Onset of dust driving?
- Connection with other properties e.g.
 - dust composition
 - stellar properties

Mass-loss history

Kemper et al., 2003; Decin et al., 2007

Left: S Sct - Olofsson et al. 1992 Right: U Ant - Olofsson et al. 1996

Maercker et al 2012

Peter Scicluna

EAYAM, 15th November 2017 12 / 16

Extended emission with the JCMT

Dharmawardena et al., in prep - CIT 6, SCUBA2 850

Extended emission with the JCMT

Dharmawardena et al., in prep - CIT 6, SCUBA2 850

NESS will map 39 sources in detail:

- Line and continuum mapping
- \dot{M} variations
- resolved gas-to-dust ratios
- CO dissociation
- deviations from symmetry?

Galactic AGB population

- Dependence of outflow properties on stellar properties
- Dust condensation
 - Efficiency: \dot{M}_D vs. \dot{M}
 - Sequence: MIR features vs. M
 - M vs. v change in radiation pressure with condensation sequence?

• Constraints for evolution and population models

Peter Scicluna

Large program now ~ 30% complete CO(3-2) vs 850 μm continuum: BK Vir

Right ascension

Ueclination

Large program now ~ 30% complete CO(3-2) vs 850 μ m continuum: BK Vir

Right ascension

Large program now ~ 30% complete CO(3-2) vs 850 μm continuum: Y UMa

Large program now ~ 30% complete CO(3-2) vs 850 μm continuum: Y UMa

Summary

- (Dust-)Mass return in nearby galaxies well studied
- Gas only possible locally
 - both required to understand mass loss
- Variability important
 - most of mass-loss occurs in short bursts
- NESS: submm survey of all dust-producing local AGB stars
 - first volume-limited survey
 - robust constraints on local mass return
 - gas-to-dust ratios
 - statistics of AGB stars
 - solve everything!
- Now is a good time to get involved!

Contact me (if you're from outside the EAO regions) or your regional coordinator (EAO regions – Taiwan: Me; China: Jinhua He; Korea: Se-Hyung Cho; Japan: Hiroko Shinnaga; UK: Iain McDonald; Canada: Jan Cami)

Peter Scicluna

EAYAM, 15th November 2017 16 / 16