

 Nuclear structure studied by X-rays,

 Nuclear structure studied by X-rays, and the relevance to the and the relevance to the surrounding ionized gas

2017/11/6 @ EAYAM 2017 Taiki Kawamuro (NAOJ)

Collaborators: Y. Ueda (Kyoto Univ.), F. Tazaki (NAOJ), Claudio Ricci (PUC), Y. Terashima (Ehime Univ.), Richard Mushotzky (UMD), M. Shirmer (MPA), J. H. Turner (Gemini obs.), R. Davies (MPA), K. Ichikawa (Columbia Univ.), N. Isobe (JAXA/ISAS), A. Tanimoto (Kyoto Univ.), M. Imanishi, T. Izumi (NAOJ)

AGN and the connection to the host gal.

- Tight correlation between the massive black hole (MBH) and host gal. properties.
\rightarrow the co-evolution

AGN and the connection to the host gal.

- Tight correlation between the massive black hole (MBH) and host gal. properties.
\rightarrow the co-evolution
- AGN may be a key object. \checkmark SMBH growth
\checkmark High energy output
(i.e., AGN feedback)

AGN and the connection to the host gal.

- Tight correlation between the massive black hole (MBH) and host gal. properties.
\rightarrow the co-evolution
- AGN may be a key object. \checkmark SMBH growth \checkmark High energy output (i.e., AGN feedback)
- AGN influence can be seen as ionized gas emission (e.g., [OIII]) $\stackrel{\text { D }}{\text { g }}$

AGN and the connection to the host gal.

- Tight correlation between the massive black hole (MBH) and host gal. properties.
\rightarrow the co-evolution
- AGN may be a key object. \checkmark SMBH growth \checkmark High energy output (i.e., AGN feedback)
- AGN influence can be seen as ionized gas emission (e.g., [OIII]) $\stackrel{\text { d }}{6}$

Do all AGNs influence the host galaxy in the same efficiency?

Do all the AGN effectively influence the host galaxy?

Likely, No

- Even the simplified torus can obscure the AGN emission.

Do all the AGN effectively influence the host galaxy?

Likely, No

- Even the simplified torus can obscure the AGN emission.
- Hard X-ray surveys (> $\mathbf{1 0} \mathbf{k e V}$) have
discovered buried AGNs. (e.g., Ueda+07, Winter+09, Ricci+17)

Geometrically-thick

Strategy using multi-wavelength data

Relation between the geometrical thickness of the torus and strength of ionized gas emission

X-ray Spectroscopy of AGN

- A powerful tool to unveil the nuclear (<10 pc) scale structure Inverse Compton (plus absorption)

$$
\text { (<~ } 10 \text { rg; e.g., Morgan+08,12) }
$$

Reflection (0.1-1 pc; e.g., Shemmer+10,11; Gandhi+15)
Soft scattered emission (> 1 pc; e.g., Bianchi+10, Gómez-Guijarro+17) Flux

X-ray Spectroscopy of AGN

- A powerful tool to unveil the nuclear (<10 pc) scale structure Inverse Compton (plus absorption)

$$
\text { (<~ } 10 \text { rg; e.g., Morgan+08,12) }
$$

Reflection ($\sim 0.1-1$ pc; e.g., Shemmer+10,11; Gandhi+15)
Soft scattered emission (> 1 pc; e.g., Bianchi+10, Gómez-Guijarro+17) Flux

X-ray Spectroscopy of AGN

- A powerful tool to unveil the nuclear (<10 pc) scale structure Inverse Compton (plus absorption)

$$
\text { (<~ } 10 \text { rg; e.g., Morgan+08,12) }
$$

Reflection (0.1-1 pc; e.g., Shemmer+10,11; Gandhi+15)
Soft scattered emission (> 1 pc; e.g., Bianchi+10, Gómez-Guijarro+17) Flux

X-ray Spectroscopy of AGN

- A powerful tool to unveil the nuclear (<10 pc) scale structure Inverse Compton (plus absorption)

$$
\text { (<~ } 10 \text { rg; e.g., Morgan+08,12) }
$$

Reflection (0.1-1 pc; e.g., Shemmer+10,11; Gandhi+15)
Soft scattered emission (> 1 pc; e.g., Bianchi+10, Gómez-Guijarro+17) Flux

[O IV] line, a proxy of the AGN accretion power

- [OIV] 25.89 um

A proxy of the AGN power ? (e.g., Rigby+09, Melendez+09)

- High Ionization potential energy $=54.9 \mathrm{eV}$
\rightarrow less contamination from starburst
- low dust extinction

Rest wavelength [$\mu \mathrm{m}$]

$\log \mathrm{L}_{[0 \mathrm{Iv}]} / L_{\text {sun }}$

Correlation between L_{x} and $L_{[0 i v]}$

- Hard X-ray ($E=14-200 \mathrm{keV}$) Swift/BAT 70-m Catalog
- Sample includes AGNs w/ the geometrically-thick torus
- Obscured AGNs obs. by Suzaku X-ray satellite (0.5-40 keV)
- Scattered fraction (or torus thickness) can be estimated

Correlation between L_{x} and $L_{[0 i v]}$

- Hard X-ray ($E=14-200 \mathrm{keV}$) Swift/BAT 70-m Catalog
- Sampla innlıinne 4GNs w/ the geometrically-thick torus
- Obscureo
- Scatte
by Suzaku X-ray satellite (0.5-40 keV) , (or torus thickness) can be estimated

Summary

- We studied the connection between the geometrical thickness of the torus and ionized gas strength/morphology
- AGN effects on surrounding material could depend on the nuclear obscuration.

