## EAYAM November 17, 2017

# Subaru Telescope adaptive optics observations of gravitationally lensed quasars

# Cristian Eduard Rusu Subaru Fellow







- Brief description of the adaptive optics imaging campaign
- Selected result: J1405: and the "natural coronagraph" lens

# Gravitationally lensed quasars (GLQs)

- First discovery Walsh et al. 1979;
- Typical configurations:

CfA-Arizona Space Telescope LEns Survey (CASTLES)

Hubble Space Telescope (HST)



~ 150 lensed quasars known

 enable the study of the lens galaxy mass profile, quasar host galaxy, AGN structure, cosmological parameters

# The need for high resolution imaging

- Typical GLQ image separation 1"- 2" ~ atmospherical seeing size
- The advent of AO: high resolution imaging possible from ground



- Conducted the first dedicated AO campaign of GLQs (2011-2014; Rusu et al. 2016)
- Targets selected from SQLS: campaign to discover new lensed quasars from SDSS (Oguri et al. 2006) ~ 60 new discoveries Main goals:
- obtain accurate relative astrometry/photometry/lens galaxy shape
- detect previously unseen features such as the host galaxy

# Adaptive optics





- Beacon to monitor wavefronts (NGS, LGS R<18 mag)</li>
- Deformable mirror to correct distorsions
- Beacon monitoring, correction computing, mirror correction cycle ~ 500 Hz



## Subaru Telescope AO imaging campaign

- ~1h/target imaging in K' (with overhead) with IRCS+AO
- observed 25 systems

K' band:

- better AO correction
- less microlensing, intrinsic
  variability, reddening
- host galaxy more prominent



| 1" | SDSS J0743+2457 | 2" SDSS J0819+5356 | 2" SDSS J0832+0404 | 1" SDSS J0904+1512 | 2" SDSS J0946+1835 |
|----|-----------------|--------------------|--------------------|--------------------|--------------------|
| 2" | SDSS J1001+5027 | 1" SDSS J1055+4628 | 1" SDSS J1131+1915 | 1" SDSS J1254+2235 | 2" SDSS J1313+5151 |
| 2" | SDSS J1322+1052 | 2" SDSS J1330+1810 | 2" SDSS J1334+3315 | 2" SDSS J1353+1138 | 1" SDSS J1400+3134 |
| 1" | SDSS J1405+0959 | 2" SDSS J1406+6126 | 2" SDSS J1455+1447 | 2" SDSS J1515+1511 | 2" SDSS J1620+1203 |

- Data modeling is non-trivial: how to characterize the PSF?
  - field too small to contain stars
  - AO PSF is time varying
- Unique feature of lensed quasars: two/four point-like sources surrounding the lens galaxy
  - PSF: 2 Moffat components
  - lens light: Sersic
  - lens mass: singular isothermal ellipsoid
  - Extended source: lensed Sersic
- More details (fitting technique, simulations)
  in Rusu et al. 2016



#### SDSS J1405+0959

- z<sub>lens</sub>=0.66 z<sub>QSO</sub>=1.98
- new components: GX, GY
- GX: morphology unclear
- J,H, K' imaging for photo-z





Photo-z estimates

G1, G2 ellipticals consistent with same redshift

GX (assuming galaxy): larger, broad redshift

GY (aperture photometry) consistent with quasar redshift



#### Nature of GX



GYa

GYb

GYc

G2

GX

A

В

GI

galaxy at high-z: unlikely, multiply imaged by G2
 star: NO, different colors from any stars in near-IR
 3rd quasar image: lensing models with GX as the 3rd quasar image produce a good fit

Assuming color difference due to extinction, can GX be a 3rd quasar image?

$$R_V = 3.1 \to E(B - V) \sim 0.8$$

Such extinction has been found in other lensed quasars

#### Nature of GY



#### source: sersic profile \* PSF



Position, elongation and orientation of GY consistent with the host galaxy

SDSS J1405+0959 has an observed host galaxy arc without a

central quasar image  $\rightarrow$  "natural coronagraph"

• only three other natural coronagraphs are known



Observed all three with spectroscopy and AO imaging

Stay tuned for results...



### Conclusions and future prospects

 Conducted the first ever AO imaging campaign of a large number of lensed quasars (25 systems with Subaru Telescope)

• Obtained astrometry, morphology and mass models competitive with HSTbased data  $\rightarrow$  vast improvement over results from low-resolution data

 Discovered a "natural coronagraph" lens, a class of objects currently under investigation;

• Other results in Rusu et al. 2016:

 showed that it is possible to study the SMBH-host coevolution with AO data, without an a-priori known PSF

- for systems with large ellipticity, the mass is less elliptical than the light

 Plans to continue the campaign as new lensed quasars are discovered from HSC Survey